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Abstract

Inspired by the demands of real-time climate and
weather forecasting, we develop optimistic on-
line learning algorithms that require no parame-
ter tuning and have optimal regret guarantees un-
der delayed feedback. Our algorithms—DORM,
DORM+, and AdaHedgeD—arise from a novel
reduction of delayed online learning to optimistic
online learning that reveals how optimistic hints
can mitigate the regret penalty caused by delay.
We pair this delay-as-optimism perspective with
a new analysis of optimistic learning that exposes
its robustness to hinting errors and a new meta-
algorithm for learning effective hinting strategies
in the presence of delay. We conclude by bench-
marking our algorithms on four subseasonal cli-
mate forecasting tasks, demonstrating low regret
relative to state-of-the-art forecasting models.

ial online learning algorithms provide robust performance in
many complex real-world online prediction problems such
as climate or weather forecasting.

In traditional online learning paradigms, the loss for round
t is revealed to the learner immediately at the end of round
t. However, many real-world applications produce delayed
feedback, i.e., the loss for rouhds not available until round

t + D for some delay perio®:* Existing delayed online
learning algorithms achieve optimal worst-case regret rates
against adversarial loss sequences, but each has drawbacks
when deployed for real applications with short horizons
T. Some use only a small fraction of the data to train
each learner (Weinberger & Ordentlich, 2002; Joulani et al.,
2013); others tune their parameters using uniform bounds on
future gradients that are often challenging to obtain or overly
conservative in applications (McMahan & Streeter, 2014;
Quanrud & Khashabi, 2015; Joulani et al., 2016; Korotin
et al., 2020; Hsieh et al., 2020). Only the concurrent work

of Hsieh et al. (2020, Thm. 13) can make use of optimistic
hints and only for the special case of unconstrained online

1. Introduction gradient descent.

Online learning is a sequential decision-making paradigm irin this work, we aim to develop robust and practical algo-
which a learner is pitted against a potentially adversarial erdthms for real-world delayed online learning. To this end,
vironment (Shalev-Shwartz, 2007; Orabona, 2019). At timewe introduce three novel algorithms—DORM, DORM+,

t, the learner must select a play from some set of possible and AdaHedgeD—that use every observation to train the
playsW . The environment then reveals the loss funcfion learner, have no parameters to tune, exhibit optimal worst-
and the learner pays the cosfw:). The learner uses infor- case regret rates under delapd enjoy improved perfor-
mation collected in previous rounds to improve its plays inmance when accurate hints for unobserved losses are avail-
subsequent round@ptimisticonline learners additionally able. We begin by formulating delayed online learning as
make use of side-information or “hints” about expected fu-a special case of optimistic online learning and use this
ture losses to improve their plays. Over a period of lefigth “delay-as-optimism” perspective to develop:

the goal of the learner is to minimizegret, an objective that
guanti es the performance gap between the learner and the
best possible constant pI@_-y in retrospect in some competitor
setU: Regret =sup,,y (o, t(Wy) ‘t(u). Adversar-

1. A formal reduction of delayed online learning to opti-
mistic online learning (Lems. 1 and 2),

2. The rst optimistic tuning-free and self-tuning algo-
rithms with optimal regret guarantees under delay
(DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning
regret bounds that reveals the robustness of optimistic
algorithms to inaccurate hints (Thms. 3 and 4),
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Our initial presentation will assume constant delaybut we
provide extensions to variable and unbounded delays in App. O.
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4. The rst general analysis of follow-the-regularized- incorporate this hint before making plaw .
leader (Thms. 5 and 10) and online mirror descen
algorithms (Thm. 6) with optimism and delay, and

5. The rst meta-algorithm for learning a low-regret opti-
mism strategy under delay (Thm. 13).

tIn standard formulations of optimistic online learning, the
convex pseudo-loss(w) is added to the standard FTRL
or OMD regularized objective function and leads to op-
timistic variants of these algorithms: optimistic FTRL

OFTRL, Rakhlin & Sridharan, 2013a) and single-step opti-

We validate our algorithms on the problem of subseasoneghistic OMD (SOOMD, Joulani et al., 2017, Sec. 7.2). Let
forecasting in Sec. 7. Subseasonal forecasting—predictin 2 @i(w, 1) andg, 2 @;(w;) denote subgradients of

preci pitation and temp_erature 2-6 weeks in advance—!s e pseudo-loss and true loss respectively. The inclusion of
crucial task for allocating water resources and preparmc%lI

for weather extremes (White et al., 2017). Subseasonq r}ezp;gp;g;;::t !eads to the following linearized update
forecasting presents several challenges for online learning
algorithms. First, real-time subseasonal forecasting suffers wy.; = argmin hgy.¢ + e+ ;Wi +  (w); (OFTRL)
from delayed feedback: multiple forecasts are issued before waw

receiving feedback on the rst. Second, the regret horizons Wi+ =argmin hge + g1 ;Wi + B (w;wy)
are short: a common evaluation period for semimonthly w2w

forecasting is one year, resulting in 26 total forecasts. Third, with go = 0 and arbitrary wo (SOOMD)
fprecaster; cannot have dif cult-to-tune parameters in real}?_vheregm 2 RYis the hint subgradient,  Ois a regular-
time, practical deployments. We demonstrate that our Alzation parameter, and is proper regularization function
gorithms DORM, DORM+, and AdaHedgeD sucessfully '

. . that is1-strongly convex with respect to a nork. The op-
overcome these challenges and achieve consistently low . . -
i imistic learner enjoys reduced regret whenever the hinting
regret compared to the best forecasting models.

errorkgi+1  &+1 K is small (Rakhlin & Sridharan, 2013a;
Our Python library for Optimistic Online Learning under Joulani et al., 2017). Common choices of optimistic hints
Delay (PoolD) and experiment code are available at include the last observed subgradient or average of previ-
https://github.com/ge aspohler/poald ously observed subgradients (Rakhlin & Sridharan, 2013a).
We note that the standard FTRL and OMD updates can be

Notation  For mteger:;a; b, we use the shortharfd , recovered by setting the optimistic hints to zero.

f1,:::;bgandgayp , ibza gi- We say a functiorf is
proper if it is somewhere nite and neverl . We let . . . L
@{w)= fg2 RO :f(u) f(w)+ hg;u wi: su2 3. Online Learning with Optimism and Delay
RYg denote the set afubgradientsff atw 2 RY and sayf

. : ) In the delayed feedback setting with constant delay of length
is -strongly convexver a convex saV.  intdom f with

) ; _ D, the learner only observeé‘si)}:lD before making play

respect td(:]( with dual ?Ormk k If 8w;u 2 V\L andgk% W41 . Inthis setting, we propose counterparts of the OFTRL

l(:@Kv(vj)f:rwe a_lvgl(u) fjw)+ I"%UB Wi+ 3 (\jN UX™ " and SOOMD online learning algorithms, which we call
or dilferentiable , we de ne the Bregman divergence optimistic delayed FTRLDFTRL) anddelayed optimistic

B (wiu), (w) (u) hr(u)iw ui.Wedene ,ine mirror descentOOMD) respectively:
diam(W) = inf w.woow kw  w%, (r)s , max(r; 0),

andmin(r;s)s , (min(r;s))+ . Wiep = argzn\}\in hgut o + hesrswi+ (W)
w
o N . (ODFTRL)
2. Preliminaries: Optimistic Online Learning Wiss =argmin hge o + her  howi+ B (W:wy)
w2WwW

Standard online learning algorithms, such as follow the reg- ) _
ularized leader (FTRL) and online mirror descent (OMD) ~ With ho, 0 and arbitrary wo; (DOOMD)

achieve optimal worst-case regret against adversarial losg, pint vectorh,.; . Our use of the notatioh,.; instead

sequences (Orabona, 2019). However, many loss sequencgsy, . for the optimistic hint here is suggestive. Our regret
encountered in applications are not truly adversa@p:  4n4|ysis in Thms. 5 and 6 reveals that, instead of hinting only
timistic online learning algorithms aim to improve perfor- ¢, the “future missing l0S§+1 , delayed online learers

mance when loss sequences are partially predictable, whilg,q1q uses hints, that guess at thepsummed subgradients
remaining robust to adversarial sequences (see, e.g., Azougf | delayed and future lossels; = = . &
s=t D .

& Warmuth, 2001; Chiang et al., 2012; Rakhlin & Sridha-
ran, 2013b; Steinhardt & Liang, 2014). In optimistic online
learning, the learner is provided with a “hint” in the form
of a pseudo-los; at the start of round that represents To analyze the regret of the ODFTRL and DOOMD algo-
a guess for the true unknown loss. The online learner carithms, we make use of the rst key insight of this paper:

3.1. Delay as Optimism
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Learning with delay is a special case of learning o1+ , 0,then8u 2 W, theSOOMDiteratesw; satisfy
with optimism.

: : Regret (u) B (u;wo)+
In particular, ODFTRL and DOOMD are instances of

OFTRL and SOOMD respectively with a particularly “bad” 17 L, hubetkg: ik ;kgi + g1 gk )
choice of optimistic hint+1 that deletes the unobserved
loss subgradientg; p+1: . Both results feature the robust Huber penalty (Huber, 1964)

Lemma 1(ODFTRL is OFTRLFyvith a bad hint)ODFTRL
is OFTRLwith gt+1 = hys1 tS:t b+1 Us-

Lemma 2(DOOMD is SOOMD with a bad hint) DOOMD  in place of the more common squared error term
is SOOMDwWithg+1 = gt + gt o G+ hear  he = %kgt g k?. As aresult, Thms. 3 and 4 strictly improve the

t rate-optimal OFTRL and SOOMD regret bounds of Rakhlin
& Sridharan (2013a); Mohri & Yang (2016); Orabona (2019,
The implication of this reduction of delayed online learning Thm. 7.28) and Joulani et al. (2017, Sec. 7.2) by revealing a
to optimistic online learning is thanyregret bound shown previously undocumented robustness to inaccurate gints
for undelayed OFTRL or SOOMD immediately yields a We will use this robustness to large hint erkgr gk to
regret bound for ODFTRL and DOOMD under delay. As establish optimal regret bounds under delay.

we dempnstrate in the remainder Of. th_e paper, this no_veAs an immediate consequence of this regret analysis and our
connection between delayed and optimistic online leammqjelay-as-optimism perspective, we obtain the rst general

allows us to bound the regret of optimistic, self-tuning, andanalyses of FTRL and OMD with optimism and delay
tuning-free algorithms for the rst time under delay. '

hube(x;y) , 3x* 3(ixj j yi)2  min(3x% jyiixj)

sy s=t D+1 s

. o . Theorem 5(ODFTRL regret) If  is nonnegative, then,
Finally, it is worth re ecting on the key property of OFTRL for gil u 2 W , theODFTRL iteratesw; satisfy
and SOOMD that enables the delay-to-optimism reduction:

each algorithm (2jepends @n andgi+1 only through the Regret (u) (n+ L P th1 by for

sumgsit + G+1 .~ For the “bad” hints of Lems. 1 and 2, t . .
these sums are observable even thogigande.1 are not bee . hubeckh, s=t p Osk Kok ):
separately observable at timelue to delay. A number of tno5rem 6 (DOOMD regret) If s differentiable and
alternatives to SOOMD have been proposed for optimistig, s, OT ps1T,then, forallu 2 W, the DOOMD

OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b;iterateswt satisfy

Kamalaruban, 2016). Unlike SOOMD, these procedures all P

incorporate optimism in two steps, as in the updates Regret (u) B (u;wp)+ % th1 bio for

P t . .
Wis1=2 =argmin,, ,w hg;wi+ B (W;w; ;) and bo . hubetkh; s=t p OsK KOt o+ N hiek):

Wi41 = argmin sWi+ B (W Wyyg = 1 .
te1 = AGMIN 2w MG Wiwea=2) (D 5 results show a compounding of regret due to delay:

. . . . . theb¢g term of Thm. 5 is of sizeD(D + 1) whenever
described in Rakhlin & Sridharan (2013a, Sec. 2.2). It |s¥htk = O(D +1), and the same holds fx.o of Thm. 6

unclear how to reduce delayed OMD to an instance of one ok vh . k = O(1). An optimal setting of therefore
t+ tk = .
these two-step procedures, as knowledge of the unobserv%%"verso( (D + 1) T) regret, yielding the minimax opti-

9t is needed to carry out the rst step. mal rate for adversarial learning under delay (Weinberger
& Ordentlich, 2002). Thms. 5 and 6 also reveal the height-
ened value of optimism in the presence of delay: in addition
To demonstrate the utility of our delay-as-optimism perspecto providing an effective guess of the future subgradient
tive, we rst present the following new regret bounds for 9t an opggnistic hint can approximate the missing delayed
OFTRL and SOOMD, proved in Apps. B and C respectively.feedback ( o_; p gs) and thereby signi cantly reduce the

i . penalty of delay. If, on the other hand, the hints are a poor
Theorem 3(OFTRL regret) If is no_nnegauve, then, for proxy for the missing loss subgradients, the ndveber
allu 2 W, theOFTRL iteratesw, satisfy fprm ensures that we still only pay the minimax optimal
D +1 penalty for delayed feedback.

3.2. Delayed and Optimistc Regret Bounds

P
Regret (u uy+ 1 hubetk k ;kgek ):
oret (u) () =t o gk ) Related work A classical approach to delayed feedback

in online learning is the so-called “replication” strategy
in whichD + 1 distinct learners take turns observing and
2For SOOMD,gt + Gt+1 &t = Gt + Gte1 (Q1t 1+ 6). responding to feedback (Weinberger & Ordentlich, 2002;

Theorem 4 (SOOMD regret) If is differentiable and
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Joulani et al., 2013; Agarwal & Duchi, 2011; Mesterharm,introduces the AdaHedgeD algorithm, an adaptive variant
2005). While minimax optimal in adversarial settings, thisof ODFTRL that isself-tuning a sequence of regulariza-
strategy has the disadvantage that each learner only setsn parameters; are set automatically using new, tighter
Dﬂl losses and is completely isolated from the other replibounds on algorithm regret. All three algorithms achieve the
cates, exacerbating the problem of short prediction horizonsninimax optimal regret rate under delay, support optimism,
In contrast, we develop and analyze non-replicated delayednd have strong real-world performance as shown in Sec. 7.
online learning strategies that use a combination of opti-

mistic hinting and self-tuned regularization to mitigate the4 Tuning-free Learning with Optimism
effects of delay while retaining optimal worst-case behavior. and Delay

We are not aware of prior analyses of DOOMD, and, to our

knowledge, Thm. 5 and its adaptive generalization Thm. 1d3edret maiching (RM) (Blackwell, 1956; Hart & Mas-
provide the rst general analysis of delayed FTRL, apartCOl€ll, 2000) and regret matching+ (RM+) (Tammelin et al.,

from the concurrent work of Hsieh et al. (2020, Thm. 1).2015) are online learning algorithms that have strong em-
Hsieh et al. (2020, Thm. 13) and Quanrud & KhashabiPirical performance. RM was developed to nd correlated
(2015, Thm. 2.1) focus only on delayed gradient descenfauilibria in two-player games and is commonly used to

Korotin et al. (2020) study General Hedging, and JoulanfMinimize regret over the simplex. RM+ is a modi cation
et al. (2016, Thm. 4) and Quanrud & Khashabi (2015,of RM designed to accelerate convergence and used to ef-

Thm. A.5) study non-optimistic OMD under delay. Thms. 5, fectively solve the game of Heads-up Limit Texas Hold'em

6, and 10 strengthen these results frgm the literature whicRoker (Bowling et al., 2015). RM and RM+ support neither
feature a sum of subgra]gient norms 3:1 kgsk or optimistic hints nor delayed feedback, and known regret
t 1 t D bounds have a suboptimal scaling with respect to the prob-

Dkg:k ) in place ofkh, s=t p Usk . Eveninthe ab lem dimensiord (Cesa-Bianchi & Lugosi, 2006; Orabona
sence of optimism, the latter can be signi cantly smaller:, ., .

) . - & Pal, 2015). To extend these algorithms to the delayed
e.g., if the gradientgs are i.i.d. mean-zero vectors,the for-

mer has size{ D) while the latter has expectati@( D). and optimistic setting and recover the optimal regret rate,

In the absence of optimism, McMahan & Streeter (2014)we introduce our generalizatiordglayed optimistic regret

obtain a bound comparable to Thm. 5 for the special case Olpatchlng(DORM)
one-dimensional unconstrained online gradient descent. Wisg = Wieg =Nl Wieeg 1 foOr (DORM)
In the absence of delay, Cutkosky (2019) introduces meta- W1, max(0;(ryy p + hyep)=)9 1

algorithms for imbuing learning procedures with optimism o )

while remaining robust to inaccurate hints; however, unlike2nddelayed optimistic regret matchingbORM+)
OFTRL and SOOMD, the procedures of Cutkpsky require \ . = wy.q =Hl; Wi for ho = wo, 0; (DORM+)
separate observation ¢f+; and eachy;, making them L q 1
unsuitable for our delay-to-optimism reduction. Wi, max O;wf “+(ry p+ hpr  hy)= ;

. . . . Each algorithm makes use of an instantaneous regret vector
3.3. Tuning Regularizers with Optimism and Delay re, 1hg w g that quanti es the relative performance
The online learning algorithms introduced so far all include©f each expert with respect to the phay and the linearized
a regularization parameter. In theory and in practice, |0ss subgradierg;. The updates also include a parameter
these algorithms only achieve low regret if the regularizad 2 and its conjugate exponept= g<q 1) that is
tion parameter is chosen appropriately. In standard FTRL, Set to recover the minimax optimal scaling of regret with

for example, one such setting that achieves optimal regréhe number of experts (see Cor. 9). We note that DORM
T kgik? and DORM+ recover the standard RM and RM+ algorithms

s, (w This choice, however, cannot be whenp =0, =1,q=2, andh, = 0; 8t.
used in practice as it relies on knowledge of all future un-

observed loss subgradients. To make use of online learning.1. Tuning-free Regret Bounds
algorithms, the tuning parameteiis often set using coarse
upper bounds on, e.g., the maximum possible subgradie
norm. However, these bounds are often very conservativ
and lead to poor real-world performance.

is =

H’p bound the regret of the DORM and DORM+ plays, we
rove that DORM is an instance of ODFTRL and DORM+
IS an instance of DOOMD. This connection enables us
to immediately provide regret guarantees for these regret-
In the following sections, we introduce two strategies formatching algorithms under delayed feedback and with opti-

tuning regularization with optimism and delay. Sec. 4 in-mism. We rst highlight a remarkable property of DORM
troduces the DORM and DORM+ algorithms, variants ofand DORM+ that is the basis of their tuning-free nature.
ODFTRL and DOOMD that arentirely tuning-freeSec. 5  Under mild conditions:
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The normalized DORM and DORM+ iterates to selecting a robus}k kg regularizer (Gentile, 2003) for
areindependenbf the choice of regularization the underlying ODFTRL and DOOMD problems.
parameter .

Related work  Without delay, Farina et al. (2021) inde-
Lemma 7 (DORM and DORM+ are independent of. If pendently developed optimistic versions of RM and RM+
the subgradieng; and hinth.., only depend on through by reducing them to OFTRL and a two-step variant of opti-

(Ws; 9 ws:gs 1:hs)s ¢ and (ws; 9 1w gs:he)s mistic OMD (1). Unlike SOOMD, this two-step optimistic
respectively, then thBORM andDORM+ iterates(w;); 1 OMD requires separate observationgef, andg;, mak-
are independent of the choice of 0. ing it unsuitable for our delay-as-optimism reduction and

resulting in a different algorithm from DORM+ even when
Lem. 7, proved in App. E, implies that DORM and DORM+ D = 0. In addition, their regret bounds and prior bounds
areautomaticallyoptimally tuned with respect to, even  for RM and RM+ (special cases of DORM and DORM+
when run with a default value of = 1. Hence, these with q=2) have suboptimal regret when the dimensibn
algorithms are tuning-free, a very appealing property foiis large (Bowling et al., 2015; Zinkevich et al., 2007).
real-world deployments of online learning.

To show that DORM and DORM+ also achieve optimal 5. Self-tuned Learning with Optimism
regret scaling under delay, we connect them to ODFTRL and Delay

and DOOMD operatlng on the nonnegative orthant with a
special surrogate o (see App. D for our proof): In this section, we analyze an adaptive version of ODFTRL

) ) with time-varying regularization; and develop strategies
Lemma 8 (DORM is ODFTRL and DORM+ is DOOMD)

' . for setting  appropriately in the presence of optimism
The DORM and DORM+ iterates are proportional 10 gnq delay. We begin with a new general regret analysis of

ODFTRLandDOOMD iterates respectively with/ , RY, optimistic delayecidaptiveFTRL (ODAFTRL)
(w) = ikwkZ, and loss'y(w) = hw; 1. _ _
Wirg =argmin hgpe p + heep s wi+ i (W)
Lem. 8 enables the following optimally-tuned regret bounds waw (ODAFTRL)

for DORM and DORM-+ run with any choice of:

Corollary 9 (DORM and DORM+ regret) Under the as- Whereh,y 2 RY is an arbitrary hint vector revealed before
sumptions of Lem. 7, forall 2 4 4 1 and any choice of Wi+1 IS generated, is 1-strongly convex with respect to a

> 0, theDORM and DORM+ iteratesw; satisfy normk k, and ; Qis aregularization parameter.
P Theorem 10(ODAFTRL regret) If is nonnegative and
Regre (u) '”f Zkuk? + W t=1 Prg ¢ is non-decreasing in, then,8u 2 W, the ODAFTRL
_ q e P - o= q(q i T “ous iteratesw, satisfy o
20 O =L Regref(u) t (U)+ - min(%a,) with
P
whereht4; , rt p+1:7 and, foreachc 2 [2;1 ], bt , hubeckh, tS:t b Osk ;kgik ) and (2)
P age , diam(W)min kh L k ;kgik
bre PE™ hubetkh, L, p rekeikrike) and o (W) v st 0 90K
bec (DORMH) 1 etkh, P ;zt 5 rskZ: The proof of this result in App. G builds on a new regret

bound for undelayed optimistic adaptive FTRL (OAFTRL).
In the absence of delayp( = 0), Thm. 10 strictly im-
proves existing regret bounds (Rakhlin & Sridharan, 2013a;

kre p + hesn heke):

If, in addition, g = argmin o ,d*" q(q 1), then

q “{_l, Mohri & Yang, 2016; Joulani et al., 2017) for OAFTRL
Regret (u) (2log,(d) 1) t 1 bea . by prorgdmg tighter guarantees whenever the hinting error
kh _: p 9tk is larger than the subgradient magni-

Cor. 9, proved in App. F, suggests a natural hinting strategyyde kgt . In the presence of delay, Thm. 10 bene ts

for reducing the regret of DORM and D@RM+: predict the photh from robustness to hinting error in the worst case
sum of unobserved instantaneous regrets, , rs. We  and the ability to exploit accurate hints in the best case.
explore this strategy empirically in Sec. 7. Cor. 9 also high-The bounded-domain factoesr strengthen both standard
lights the value of the parameter in DORM and DORM+: OAFTRL regret bounds and the concurrent bound of Hsieh
using the easily computed valge= argmin g , d?*'(cf etal. (2020, Thm. 1) whediam(W ) is small and will en-

1) yields the minimax optimal log,(d) dependence of re- able us to design practica-tuning strategies under delay
gret on dimension (Cesa-Bianchi & Lugosi, 2006; Orabonawithout any prior knowledge of unobserved subgradients.
& Pal, 2015). By Lem. 8, setting in this way is equivalent We now turn to these self-tuning protocols.
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5.1. Conservative Tuning with Delayed Upper Bound thedelayed AdaHedge-stylddaHedgeD) sequence

. . . . D
Setting aside the.r bounded—domamaactolrs I: Thm.10 43 = 1 ts:l s for (AdaHedgeD)
for now, the adaptive sequence = m is t, Min(Feer (We; 1) Frea (Wi ) hgeywe Wyl
known to be a near-optimal minimizer of the ODAFTRL Froa (We; ) Frean(We o) + hgowe  Wei)s
regret bound (McMahan, 2017, Lemma 1). However, th|sWith We . aramin Fos (W 1) 3)
value is unobservable at tinte A common strategy is to o ArgMiNyaw Frea (W o),
P W , argmin F W; +

play the conservative valug = (D Bo* o “ber ‘ Mifuow Frea (Wi )

supy,y  (U) m|n( kg k . :L)I,,ht Ot D't.Wi .
whereB is a uniform upper bound on the unobserag khe gu bk S
terms (Joulani et al., 2016; McMahan & Streeter, 2014). Inand Fis1 (W; ), ¢ (W) + hgg;wi:

practice, this requires computing arpriori upper bound . .
on any subgradient norm that could possibly arise and ofter:{era'tse;gggsef?/a“ve’ then, for all 2 W, the ODAFTRL

leads to extreme over-regularization (see Sec. 7).
Regret (u) ) +1

9 p .

2maxgzria; b 1F t =1 Agg +2 byr

As a preliminary step towards fully adaptive settings gf
we analyze in App. H a negelayed upper boun(DUB)

tuning strategy which relies only on obserdeg: terms
and does not require upper bounds for future losses.

. Reﬂ1arkably, Thm. 12 yields a minimax optimal
Theorem 11(DUB regret) Fix > 0,and, forair ;bye (" (D +1) T + D) dependence on the delay parameter
as in(2), consider thelelayed upper bour®UB) sequence  and nearly matches the Thm. 5 regret of the optimal constant
5 tuning. Although this regret bound is identical to that in
t+v1 = ~MaXy + p 18j Dp+1:jF (DUB) i i
p ! b Thm. 11, in practice the; values produced by AdaHedgeD
1 TtDb_o - can be orders of magnitude smaller than those of DUB,
+ i=1 a|'F +2 bI,F . . . .o .
’ granting additional adaptivity. We evaluate the practical

If is nonnegative, then, for all 2 W, theODAFTRL  implications of these settings in Sec. 7.

iteratesw, satisfy As a nal note, when is bounded otJ , we recommend
choosing =su u) sothat—“) 1. For negative
Regre-*- (U) ﬁ + 1 g .pUZ.U ( ) P d g
dp entropy regularization (u) = i=1 Uj In(u;) +In( d) on
2maxz(rja b 1F + @l +2 b - the simplexd = W = 4 4 4, thisyields =In(d)anda

regret bound with minimax optimal In(d) dependence on

As desired, the DUB setting of; depends only on previ- d (Cesa-Bianchi & Lugosi, 2006; Orabona &k2015).

ously observed;r andbr terms and achieves optimal Related work Our AdaHedgeD ; terms differ from
regret scaling with the delay peri@l. However, the terms standard AdaHedge increments (see, e.g., Orabona, 2019,
a.r ,bir are themselves potentially loose upper bounds foiSec. 7.6) due to the accommodation of delay, the incorpora-
the instantaneous regret at timdn the following section, tion of optimism, and the inclusion of the nal two terms in
we show how the DUB regularization setting can be re nedthemin. These non-standard terms are central to reducing
further to produce AdaHedgeD adaptive regularization. the impact of delay on our regret bounds. Prior and con-
current approaches to adaptive tuning under delay do not
5.2. Re ned Tuning with AdaHedgeD incorporate optimism and require an explicit upper bound
. on all future subgradient norms, a quantity which is often
As noted by Erven et al. (2011); de Rooij et al. (2014);4it oyt to obtain or very loose (McMahan & Streeter, 2014;
Orabona (2019), the effectiveness of an adaptive regulaf|anj et al., 2016; Hsieh et al., 2020). Our optimistic al-
ization setting ; that uses an upper bound on regret (Sucrborithms, DUB and AdaHedgeD, admit comparable regret

asbye ) relies heavily on the tightness of that bound. Ing,arantees (Thms. 11 and 12) but require no prior knowl-
practice, we want to set using as tight a bound as possi- edge of future subgradients.

ble. Our next result introduces a new tuning sequence that
can be used with delayed feedback and is inspired by thsg . . .
popular AdaHedge algorithm (Erven et al., 2011). It makes2- L€arning to Hint with Delay

use of the tightened regret analysis underlying Thm. 10 t\g \ve have seen, optimistic hints play an important role in

enable tighter settings of compared to DUB, while still - 4jine learning under delay: effective hinting can counteract
controlling algorithm regret (see proof in App. ). the increase in regret under delay. In this section, we con-
Theorem 12(AdaHedgeD regret)Fix > 0, and consider sider the problem of choosing amongst several competing
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hinting strategies. We show that this problem can again beubgradient hints, skHk; is O(D + 1). Thus, for this
treated as a delayed online learning problem. In the folehoice of hinter loss, theubef ¢; () termisO((D + 1) 3),
lowing, we will call the original online learning problem and the hint learner suffers on@(T*4(D + 1) ***) ad-
the “base problem” and the learning-to-hint problem theditional regret from legyning to hint. Notably, this addi-
“hinting problem.” tivg regret penalty i©( (D +1)T)if D = O(T) (and

of (D +1)T)whenD = o(T)), so the learning to hint

Suppose that, at timg we observe the hing; of m differ- e ,
strategy of Thm. 13 preserves minimax optimal regret rates.

ent hinters arranged intoch  m matrixH;. Each column
of Hy is one hinter's best estimate of the sum of missingRelated work Rakhlin & Sridharan (2013a, Sec. 4.1)
loss subgradientg: p:. Our aim is to output a sequence propose and analyze a method to learn optimism strategies
of combined hint (! 1) , H¢! with low regret relative  for a two-step OMD base learner. Unlike Thm. 13, the
to the best constant combination stratég? , 4m 1 approach does not accommodate delay, and the analyzed
in hindsight. To achieve this using delayed online learningregret is only with respect to single hinting stratedie®

we make use of a convex loss functig@! ) for the hint f &) gj 2m rather than combination strategiés2 4 n 1.
learner that upper bounds the base learner regret.

Assumption 1 (Convex regret bound)For any hint se- 7. Experiments

quence(hy){.; andu 2 , the base prc&nlem admits the

Pt
regret boundRegret (u)  Co(u)+ Cq(u) =1 fe(he)
for C1(u) Oand convex functionfs independent ofi.

We now apply the online learning techniques developed
in this paper to the problem of adaptive ensembling for
subseasonal forecasting. Our experiments are based on
As we detail in App. K, Assump. 1 holds for all of the the subseasonal forecasting data of Flaspohler et al. (2021)
learning algorithms introduced in this paper. For examplethat provides the forecasts 6f= 6 machine learning and

by Cor. 9, if the ba:}? learner is DORM, we may choosePhysics-based models for both temperature and precipita-
KoKz tion at two forecast horizons: 3-4 weeks and 5-6 weeks. In
Co(u)=0,Co(u) = 5 gy and theO(D +1) convex  qational subseasonal forecasting, feedback is delayed:
functionf(h¢) = krikqkhy «t plskg bigd models maké® = 2 or 3 forecasts (depending on the fore-
8ast horizon) before receiving feedback. We use delayed,
optimistic online learning to play a time-varying convex
combination of input models and compete with the best

For any base learner satisfying Assump. 1, we choos
lt(! ) = f¢(H¢!) as our hinting loss, use the tuning-free
DORM+ algorithm to output the combination weight ) o .

gon u'pu ination Welgie input model over a year-long prediction period € 26

on each round, and provide the hin{(! ) = H¢! ; to the . S .
base learner. The foITowing result, pEO\t/()ad in Aptp J, showssem'mOnthly dates). The loss function is the geographic

that this learning to hint strategy performs nearly as well agtﬁowe?n S?Juire(;isetrr:)r (RMSE) acréest locations in
the best constant hint combination strategy in restrospect. € viestern United States.

Theorem 13(Learning to hint regret) Suppose the base We evaluate the relative merits of the delayed online learning
problem satis es Assump. 1 and the hinting problem istechniques presented by computing yearly regret and mean

solved withDORM+ hint iterates! ¢, hinting losses; (! ) = RMSE for the ensemble plays made by the online leaner

fi(H¢! ), no meta-hints for the hinting problem, agd- in each year from 2011-2020. Unless otherwise speci ed,

argming , m2=¢’(® 1). Then the base problem with all online learning algorithms use thecent _g hint gs,

hintsh¢(! {) = H,!; satis es which approximates each unobserved subgradient at time
q P t with the most recent observed subgradignty 1. See

Regret (u) Co(u)+ Cyi(u) infy» =1 Fe(he()) App. L for full experimental details, App. N for algorithmic

1 Pt 1=4 details, and App. M for extended experimental results.
* Calu) @loge(m) NG v+ iy hubel s ) Competing with the bestinputmodel The primary ben
. -
for ¢+, 4D+1) o pkskii (2@I(); e t of online learning in this setting is its ability to achieve
and , 4k pk; ;:t o K ski: small average regret, i.e., to perform nearly as well as the
best input model in the competitor d¢twithout knowing
To quantify the size of this regret bound, con-which is bestin advance. We run our three delayed online

sider agairb the DORM base learner with(h;) = learners—DORM, DORM+, and AdaHedgeD—on all four
kr¢kgkhy «t plskg- By Lem. 26 in App. K, subseasonal prediction tasks and measure their average loss.

1= :
K ke d™9kH kg krikq for kHiky the maximum ab- o average yearly RMSE for the three online learning al-
solute entry ofH;. Each column oH; isasumD +1  45ithms and the six input models is shown in Table 1. The

*The alternative choict (h¢) = 1kh, P rsk?also DORM+ algorithm tracks the performance of the best input

bounds regret but may have sie D + 1) 2). =P model for all tasks except Temp. 5-6w. All online learning
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A. Extended Literature Review

We review here additional prior work not detailed in the main paper.

A.1. General online learning

We recommend the monographs of Shalev-Shwartz (2012); Orabona (2019) and the textbook of Cesa-Bianchi & Lugosi
(2006) for surveys of the eld of online learning and Joulani et al. (2017); McMahan (2017) for widely applicable and
modular analyses of online learning algorithms.

A.2. Online learning with optimism but without delay

Syrgkanis et al. (2015) analyzed optimistic FTRL and two-step variant of optimistic MD without delay. The work focuses
on a particular form of optimism (using the last observed subgradient as a hint) and shows improved rates of convergence to
correlated equilibria in multiplayer games. In the absence of delay, Steinhardt & Liang (2014) combined optimism and
adaptivity to obtain improvements over standard optimistic regret bounds.

A.3. Online learning with delay but without optimism

Overview Joulani et al. (2013; 2016); McMahan & Streeter (2014) provide broad reviews of progress on delayed online
learning.

Delayed stochastic optimization Recht et al. (2011); Agarwal & Duchi (2011); Nesterov (2012); Liu et al. (2014); Liu &
Wright (2015); Sra et al. (2016) studied the effects of delay on stochastic optimization but do not treat the adversarial setting
studied here.

FTRL-Prox vs. FTRL Joulani et al. (2016) analyzed the delayed feedback regret &ffiR&-Proxalgorithm, which
regularizes toward the last played iterate as in online mirror descent, but did not study the standard FTRL algorithms
(sometimes calleBTRL-Centereflanalyzed in this work.

A.4. Self-tuned online learning without delay or optimism

In the absence of optimism and delay, de Rooij et al. (2014); Orabonal £B15); Koolen et al. (2014) developed
alternative variants of FTRL algorithms that self-tune their learning rates.

A.5. Online learning without delay for climate forecasting

Monteleoni et al. (2011) applied the Learnenline learning algorithm of Monteleoni & Jaakkola (2004) to the task of
ensembling climate models. The authors considered historical temperature data from 20 climate models and tracked the
changing sequence of which model predicts best at any given time. In this context, the algorithm used was based on a
set of generalized Hidden Markov Models, in which the identity of the current best model is the hidden variable and the
updates are derived as Bayesian updates. This work was extended to take into account the in uence of regional neighboring
locations when performing updates (McQuade & Monteleoni, 2012). These initial results demonstrated the promise of
applying online learning to climate model ensembling, but both methods rely on receiving feedback without delay.

B. Proof of Thm. 3: OFTRL regret

We will prove the following more general result for optimistic adaptive FTRL (OAFTRL)
Wiry =argming oy hgoe + er s Wi+ en (W), (OAFTRL)

from which Thm. 3 will follow with the choice; = forallt 1.
Theorem 14(OAFTRL regret) If is nonnegative an@ {); 1 is non-decreasing, the8u 2 W , theOAFTRL iterates
w, satisfy,
Regret (u) T (u)+ P
T (U)+ P thl min Lhubefkg; &k ;kgik );diam(W)min(kg, &k ;kgik )

t
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for

t o Min(Feer (Wes 1) Frea (We; ) oo we  wyd;
Frea (We; t)  Frea (We; o)+ hgeswe Wei)s with
W, argming,w Frea (W5 ¢); Feaa(w; ), ¢ (w)+ hgee;wi;  and

kglfgtlg;k JD)(ge gr);wi:

Wi, argming oy ¢ (W) + hgg + min(

Proof. Consider a sequence of arbitrary auxiliary subgradient lgints: : ; g 2 RY and the auxiliary OAFTRL sequence
Wi =argming ow Mot + G ;wW i+ 141 (w) for O t T with gryy, O and 141 = 10 (4)

Generalizing the forward regret decomposition of Joulani et al. (2017) and the prediction drift decomposition of Joulani et al.
(2016), we will decompose the regret of our origi(ak);-,; sequence into the regret of the auxiliary sequemece){-;
and the drift betweetw,){-; and(w,)/\; .

For each time, de ne the auxiliary optimistic objective functiof; (w) = Fi(w) + hg,;wi. Fixing anyu 2 W, we have
the regret bound

P
thl t(wy)  Ti(u) thl hgi;wy ui (since each; is convex withg; 2 @;(w+))
T . ; T . P
| t=1 r.gt ;Nt Wti + | t=1 h}]%,th ui .

drift auxiliary regret

Regret (u)

To control the drift term we employ the following lemma, proved in App. B.1, which bounds the difference between two
OAFTRL optimizers with different losses but common regularizers.

Lemma 15(OAFTRL difference bound) TheOAFTRL and auxiliaryOAFTRL iterates(4), w; andw, , satisfy

kwe wik  min(Skg gk ;diam(W)):

Lettinga = diam(W) 2 R[flg , we now bound each drift term summand using the Fenchel-Young inequality for dual
norms and Lem. 15:

hge;we  wii k gk kwy  wi k  min %kgtk kgt o k ;akgik

To control the auxiliary regret, we begin by invoking the OAFTRL regret bound of Orabona (2019, proof of Thm. 7.28), the
nonnegativity of , and the assumption th@t;); ; is non-decreasing:

P , P
Tohgow, Ui o7a (W) 1 W)+ L Fea W ) FeaWe 0+ (0 1) (W)

T (U)W [ Faa (W ) Fra (Wi o)

We next bound the summands in this expression in two ways. Smcis the minimizer off, , we may apply the
Fenchel-Young inequality for dual norms to conclude that

Fior (Wes o) Fraa (Wi )= Fp(We)+ w;0e i (Fp (W) + hwesge 6i)
hw, w¢g e kw, wikkg: &k akgr e k:
Moreover, by Orabona (2019, proof of Thm. 7.28) and the factthaninimizesFi+; (; ) overW,

kgt g’t kz .
7‘ .

Frar (Wy; 1) Fraa (W t)

Our collective bounds establish that

t(8) s Frer (Wi ©)  Frea (We; o)+ hgewe wyld
min(%kgt g k% akgr g k )+ min( %kgtk kgt gy k ;akgik )
7Kgt gk + Lkoik ket gk :
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To obtain an interpretable bound on regret, we will minimize the nal expression over all convex combirggtiohg; and
6:. The optimal choice is given by

Ot

C

ge+c(ee 0 for

min(kg‘fg‘g[k :1) = argmin 7Kgt g k?+ Lkgik kgt gk
c Lg =gt+c(g Qi)

argmin l%kgt gik? + lfckgtk kgt gik :

For this choice, we obtain the bound

( 1(00)+ %kgt 0ck® + %kgtk kG: ok
%kgt gik® + 2Skgik kgt gk

Aomin(kge gk skak )2+ Lhaik (kge gk K gik )

ﬁ(kgt gk®  (kge gk k gik )3)
“Lhubetkg: gk ;kgik )

and therefore
e=min( «(g); «(90); «(8))+ min(Lhubetkg: gk ;kgik );amin(kge gk ;kgik )): ®)
Sinceg; is arbitrary, the advertised regret bounds follow as
Regref (u)  infy g 2p o1 (W)+ Ly o(8)

= 7 W+ L infg ore (6)

Py
a1 (U)+ g min( (&) ¢(9); ¢(01)+:

B.1. Proof of Lem. 15: OAFTRL difference bound

P
Fix any timet, and de ne the optimistic objectivelgunctidﬁ(w) = ¢ (w)+ it:llhgi;wi + hge; wi and the auxiliary
optimistic objective functiorF;, (w) =  (w)+ itzllhji;wi + hg, ;wi so thatw; 2 argmin,, ,\, Fi(w) andw, 2
argminy, ,\ F; (W). We have

Fi(wy)  Fo(we) —kwe w, k? by the strong convexity df; and
Fi(w,) Fi(wy) kw¢ w¢k® by the strong convexity of;.
Summing the above inequalities and applying the Fenchel-Young inequality for dual norms, we obtain
tkwy  w k? he  gowe wii k & gk kwe wk;

which yields the rst half of our target bound after rearrangement. The second half follows from the de nition of diameter,
askw; w.k diam(W).

C. Proof of Thm. 4. SOOMD regret
We will prove the following more general result for adaptive SOOMD (ASOOMD)

Wisp =argmin hge + &+1 ;Wi + 141 B (w;w) witharbitrary wo and go=go=0 (ASOOMD)

w2W

from which Thm. 4 will follow with the choice; = forallt 1.
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Theorem 16 (ASOOMD regret) Fix any 141 0. If each( t41 t) is proper and differentiable,o , 0, and
gr+1 , O,then,forallu2 W, theASOOMD iteratesw; satisfy

P
Regret (u) o1 OB (Uiwy+
- min diam(W)kge gk ; —L-hubetkg, gk kg + g1 gk )

Proof. Fix anyu 2 W, instantiate the notation of Joulani et al. (2017, Sec. 7.2), and consider the choices

*r1= 2 ,rt=( 1 () fort 2,sothatryy= s fort 1,

* =%+ hgs1 & ifort O

e ep(w)= 1B (w;wg)andeg Oforallt 1,

*Pi, T1 =11 & hgr G i= 2 1B (swo) her o i,

*P, Mt G 1=rt &1 het & i=(Cw1 ) he & 1iforalt 2

Since, for each, { =0 and’; is convex, the AA-MD regret inequality of Joulani et al. (2017, Eq. (24)) and the choice
g1+1 = 0 imply that

X . X .
Regret (u) = t(we) t(u)
t=1 t=1
X X X
B (uywe)+  q(u) a(wWeea)+  Bp (uswy)
t=1 t=0 t=1
X
Bro. (Wis1 ;We) + g, we Wi + t
t=1 t=1 t=1

1(B (u;wg) B (Wi;wo))+  hBisr  GU Wiagld

t=0
X X _
+ ( t+2 t)B (u;wy) + MO We  Wiag t+1 B (Wie1 s We)
t=1 t=1
ﬂ— .
= (e )B (Uiwe)+ gy guWe Wil 41 B (Wi s We): (6)
t=0 t=0

To obtain our advertised bound, we begin with the expression (6) and invokestneng convexity of and the nonnegativity
of B (wq;wg)to nd

P P _
Regret (u) tT=o( t+1 t)B (u;wy) + tho Ot G We Wi t+1 B (Wie1 s We)

;r:O( t+1 t)B (u;wy) + 1T=1 gt G We Wi LKW Wiep K2 (7)

We will bound the nal sum in this expression using two lemmas. The rstis a bound on the difference between subsequent
ASOOMD iterates distilled from Joulani et al. (2016, proof of Prop. 2).

Lemma 17 (ASOOMD iterate bound (Joulani et al., 2016, proof of Prop. #)) is differentiable and.-strongly convex
with respect tk k, then theASOOMD iterates satisfy

kwe Wik kg + g1 gk

The second, proved in App. C.1, is a general bountdgpwi ikvkz under a norm constraint on
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Lemma 18(Norm-constrained conjugatefor anyg 2 R% and ;c;b > 0,
sup hg;vi - 5kvk? = L min(kgk ;c;b )(kgk % min(kgk ;c;b))
v2Rd:kvk min( &;b)
min(bkgk ; £ min(kgk ;c)(kgk 3 min(kgk ;c)))
= min( bkgk ; - (kgk? (kgk  min(kgk ;c))?))
= min( bkgk ; 5~(kgk®  (kgk  ©)3))
min(z-kgk?; Lckgk ; bkgk ):

By Lems. 17 and 18 and the de nition af, diam(W ), each summand in our regret bound (7) satis es

hge W Weeni  —SEKkwe  Weeg K2 sup hge  govio —Sikvk?

2
v2Rd:kvk min( 11+1 kgi+gt+1 gk ;a)

=min akg: Gk ;z2—(kge Gk® (kgr Gk K g+ g Gk )?)

2 tn

yielding the advertised result. O

C.1. Proof of Lem. 18: Norm-constrained conjugate

By the de nition of the dual norm,

sup hg;vi  skvk? = sup sup hg;vi sa®’=  sup akgk &’
v2Rd:kvk min( £;b) a min( £;b) v2Rd:kvk a a min( £;b)

= Lmin(kgk ;c;b )(kgk 3 min(kgk ;c;b))  min(+ckgk ;bkgk ):
We compare to the values of less constrained optimization problems to obtain the nal inequalities:

sup akgk za? supakgk sa?= fmin(kgk ;c)(kgk 2 min(kgk ;c))
a min( £;b) a ¢
supakgk  a?= 1lkgk?:

a>0

D. Proof of Lem. 8: DORM is ODAFTRL and DORM + is DOOMD

Our derivations will make use of several facts abduhorms, summarized in the next lemma.
Lemma 19("P norm facts) Forp 2 (1;1 ), (w)= 1kwk2, and any vectors/;v 2 R andwo 2 RY,

; (W): r %ka§:S|gn(W)JWJp l:kaB 2 (8)
hw;r  (w)i = kwk2 =2 (w)
(v)=sup hwivi (W)= jkvki for 1=q=1 1=p ®
w2 Rd

ro(v)=sign(v)jvj? *=kvkg 2
+ (V)= sup hw;vi (w) = sup hw;(v).i (w) = %k(v)+ ké

w2RY w2Rd
r ., (v)=argmaxhw;vi (w) =argmin (w) hw;vi =(v)d t=k(v), kg 2 (10
w2R¢Y w2R¢
min B (w;wg) hv;wi= (hwo;r (wo)i (wo) suphw;r (wp)+ v= (w))
w2 RdY w2Rd

(hwoir  (wo)i  (wo) 4 (r (wo)+ v=))
( (wo) +(r (wo)+v=))
( (wo) 3k(r (wo)+ v=).Kj)

(3kwok?  1k(wp ‘=kwokP 2+ v= ). K2):
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Proof. The fact (8) follows from the chain rule as

P
rjzkwk? = o (kwkB)>P = Z(kwkB)@=P) 1r jkwkp = Skwkj Pr | Jqo:l jw;j ojP

= %kwkg Ppsign(w; )jw; P * = sign(w;)jw; P t=kwkb 2
The fact (9) follows from Lem. 18 dsk is the dual norm ok k,. O

We now prove each claim in turn.

D.1. DORM is ODAFTRL

Fixp2 (1;2], > 0,andt 0. The ODAFTRL iterate with hint hi. , W , RY, (w)= 3kwk3, loss subgradients

gOPAETRL = 1. p, and regularization parametettakes the form

argmin =~ (w) hw;hyg +ry pi
w2RY

=argmin (W) hw;(ha +ryg p)= i
w2RY

=((r1x o + hw1)=)? *=k((r1x o + )= )+ Kk 2 by (10)
(rie o+ he1)=)3 *k((rie o + her)=)? kB 2 since(p 1)(g 1)=1
Wit KW kg 2

proving the claim.

D.2. DORM+ is DOOMD

Fixp2 (1;2]and > 0,andlet(w,); odenote the unnormalized iterates generated by DORM+ with hiniastantaneous
regretsry, regularization parameter, and hyperparameter Forp= q=gq 1), let(w); o denote the sequence generated
by DOOMD withwo = 0, hints h;, W , RY, (w)= 2kwk2, loss subgradiengP®°™P = r, and regularization
parameter . We proceed by induction to show that, for eactv; = wkw kP 2,

Base case By assumptionwg = 0 = wokwokg 2, con rming the base case.

Inductive step Fixanyt 0and assume that for eash t,wg = wskwskg 2. Then, by the de nition of DOOMD
and our P norm facts,

Wiep =argmin h heeg + hy 1y p;wi+ B (W wy)
w2R¢

=argmin ( (w)  (w¢) hw wgr (w)i)+ h hya +he 1y prwi
w2R¢

=argmin (W) hw;r (W)+(ri p h¢+ hga)= i
w2R¢

=argmin (W) hw;wP *=kwkB 2+(ry p hi+hu)=1 by (8)
w2R¢

=argmin (w) hw;w} Y+(r¢y b hi+ hya)=1i by the inductive hypothesis
w2RY

=(wP '+ (re o hit hua)=)d t=kw? Y+ (re o he+ hug)=)akd 2 by (10)
(WP "+ (rc o hethen)=)d kwP Y+ (re o he+ hua)=) 'K 2 since(p 1)(q 1)=1
= Wi KWiag kg 2;

completing the inductive step.
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E. Proof of Lem. 7: DORM and DORM+ are independent of

We will prove the following more general result, from which the stated result follows immediately.

Lemma 20(DORM and DORM+ are independent of. Consider eitheDORM or DORM+ playsw; as a function of
> 0, and suppose that for all time pointsthe observed subgradiegt and chosen hini;.; only depend on through
(Ws; 9 lwg;gs 1;hs)s ¢ and(ws; 9 ws;gs;hs)s ¢ respectively. Then if9 1w, is independent of the choice of
> 0,thensois 9 lw, forall time pointst. As aresultw; / 9 w, is also independent of the choice of 0 at all

time points.

Proof. We prove each result by induction on

E.1. Scaled DORM iterates 9 ‘w, are independent of

Base case By assumptionh; is independent of the choice o 0. Hence 9 'w; = (h,)? Lis independent of> 0,
con rming the base case.

Inductive step Fix anyt 0, suppose 9 ‘ws is independent of the choice o Oforalls t, and consider

_ 1.
9w =(ree p + her)d

Sincery.; p depends on only throughws andgs fors t D, our dependence assumptions {gg; hs+1 )s t; the
fact that, for eacls, ws / 9 lwg; and our inductive hypothesis together imply thét 'w,.; is independent of> 0.
E.2. Scaled DORM+ iterates 9 1w, are independent of
Base case By assumption, 9 w is independent of the choice of 0, con rming the base case.
Inductive step Fix anyt 0 and suppose 9 ‘ws is independent of the choice of> Oforalls t. Since
(p (@ 1)=1,

Tl =( wl P+ p he+he)d P=( T tw)P T p he+ heg)d T

Sincer; p depends on only throughw; p andg; p, our dependence assumptions fgs; hs+1)s ¢; the fact that, for
eachs t,ws/ 9 wg;and ourinductive hypothesis together imply that *w..; is independent of> 0. O

F. Proof of Cor. 9: DORM and DORM+ regret

Fixany > Oandu 24 4 4, consider the unnormalized DORM or DORM+ iterates and de new; = wtkwtkg 2 for
eacht. For either algorithm, we will bound our regret in terms of the surrogate losses

w), hrgwi = hggwi how;Lihgg wyi
de ned forw 2 RY. Since’{(u) = hgi;u  wqi, Y(w;) = 0, and each is convex, we have

I:’T ~ ~ PT : I:)T N N
Regret (u) = o t(wy)  “t(u) iz OGwe Ui = L Ti(wy) Te(u):

For DORM, Lem. 8 implies th&iw;): i.are ODFTRL iterates, so the ODFTRL regret bound (Thm. 5) and the fact tisat
1-strongly convex with respecttok = * p 1k k, (see Shalev-Shwartz, 2007, Lemma 17) vkitk = pﬁk Kq imply

2, 1 Pr
Regref (u) skuki+ —tgy = Dot
Similarly, for DORM+, Lem. 8 implies thatw); o are DOOMD iterates withvy = 0, so the DOOMD regret bound
(Thm. 6) and the strong convexity ofyield

P

Regret (u) B iz (ui0)+ -1 Brg = kUG Gy o b

1
[CI)
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Since, by Lem. 7, the choice ofdoes not impact the iterate sequences played by DORM and DORM+, we may take the
inmum over > 0in these regret bounds. The second advertised inequality comes from the igé.clltiiyq 1and the

norm equivalence relatiorks kq d=9kvk; andkvk, k vky =1 forv 2 RY, as shown in Lem. 21 below. The nal
claim follows as

infgo 2 d2°0°(qP 1) =inf g 5 22100:(D=a(P 1) 221092(D=(2log2(d) (2]og,(d) 1) = 2(2log,(d) 1)
sinced > 1.
Lemma 21 (Equivalence op-norms) If x 2 R" andq > q® 1, thenkxky k xkp n@=a’ =0kxk,.
groof. To showkxkq Kk xkg for g > q® 1, suppose without loss of generality thatkqo = 1. Then,kxkg =
oixiid T ixi = ek = 1. Hencekxkg 1= kxke.
For the inequalitykx kqo n=d’ 1=akxkq, applying Hilder's inequality yields
2ot Lo’

=n kxkg

al9

o P o P O P
kxkgoz inzlljxiqu cn, 1)t o ( n X9

sokxkg n=d° =ik, O

G. Proof of Thm. 10: ODAFTRL regret
Since ODAFTRL is an instance of OAFTRL with+1 = hi+1 P ts:t b+ Us, the ODAFTRL result follows immediately
from the OAFTRL regret bound, Thm. 14.
H. Proof of Thm. 11: DUB Regret
Fix anyu 2 W . By Thm. 10, ODAFTRL admits the regret bound
Regref (U) 1 (U)+ ' 1y min(Lbee sae ):

To control the second term in this bound, we apply the following lemma proved in App. H.1.
Lemma 22 (DUB-style tuning bound) Fix any > 0and any non-negative sequenc¢eg)/-; , (b){-; . If

qP—
t D
41, 2MaX t p 18 p+1:j * . @ +2Db; t+1 foreach t
then
T ol . )
t=1 mln(kf_ tvat) T+D+1 T+D+1 -

Since 1 T+D+1, the result now follows by settingg = a.r andb = br , So that

Regret(u) 1 (UW+ t4ps1r ( (U* ) Tep41:

H.1. Proof of Lem. 22: DUB-style tuning bound

We prove the claim

P .
t, = Min(b=ija) t+D+1 t+D+1
by induction ort.
Base case Fort 2 [D + 1],
. 9o
izg min(b= ;&) ait 1+a 2mMax t 13 p+j + i @+2bi=  py t+D+1

con rming the base case.
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Inductive step Now xanyt+1 D +2 and suppose that

i i+D+1 i+D+1
foralll i t. We apply this inductive hypothesis to deduce that, for €achi t,
21 Z=( j+min(bar= i a1)° 2=2 imin(bs1= i+1;8+1) +MiN( D41 = 415 8541)2
=2 i pmin(b+1= js1 @41)+2( i p)MIN(B41 = js1;@e1) +MIN( By = 415 8541)°
Xi
=2 i pmin(b+1= j41;841)+2 min(g = j;a)MiN(Be = 41 ;@41 ) +MiN( Bt = 41841 )°
j=i D+1

2 e Min(De1 = je15@41)+28 pari MiN(D41 = 415 @41) + 8%y
2bisy + 8% +28 pari MiN(D1 = 41 @41 ):

Now, we sum this inequality ovér=0;:::;t, to obtain
t2+1 P i 0(2b|+l + a|+1)+2 P it—o i D+1:i min(h+1: i+1 ;ai+1)
= H@bi+a)+2 L a o 1mm(b— a)
1@ +2Db)+2max; (& psj i min(b= i a)

t+l .
= (@ +2bi)+2 wimax (g perj

Solving this quadratic inequality and applying the triangle inequality, we have

q
1 '(+l
t+1 MaX; (& p+1:j+ 5 (2max ¢a D+1:j)2 +4 a,+2 bi

I I+l
2max @ p+wj t+ a2+2 bi= (ip+ t+D+2 -

l. Proof of Thm. 12: AdaHedgeD Regret

Fix anyu 2 W . Since the AdaHedgeD regularization sequengg; ; is non-decreasing, Thm. 14 gives the regret bound

Regref (u) 7 (u)+PL1 ¢= 1 W+ 7epa (U ) Tepe1;

and the proof of Thm. 14 gives the upper estimate (5):

t min b‘f ; AtF forall t2[T]: (11)
Hence, it remains to boundr+ p +1 . Since 1 = = p+1 =0and ( t+1 t)= ¢ pfort D+1,
P P
T+D+1 — tT+1D ( 1 9= tT:+DD+1 (t+1 02+2 (a1 t) t
= |, 2= +2 ¢ wup bythedenitionof v
P T

= 2= +2 ¢ +2 (w0 t)

PT
p =1 = +2 ¢ (+2 (maxem( v 1)
— T —
= o 2= +2 ( { *2 Tip+1 MAX2(T] t Dt 1
.

tz1 8 = +2byr +2 Tips MaXgria px 1F by (11).

Solving the above quadratic inequality fof+ o +1 and applying the triangle inequality, we nd
q I‘\
TiD+41  MAX[rja bt 1F t 3 AMaxeriar o 1;F)2+4 Ilat,: +2 by
9 p— 5
2maxoriat bt LF * t=1 Qg +2 b
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J. Proof of Thm. 13: Learning to hint regret

We begin by bounding the hinting problem regret. Since DORM+ is used for the hinting problem, the following result is an
immediate corollary of Cor. 9.

Corollary 23 (DORM+ hinting problem regret)With convex lossdsg(! ) = f{(H! ) and no meta-hints, thBORM+
hinting problem iterate$ ; satisfy, foreactv2 4 , 1,

P P a4 =
HintRegret (V) , 1oy k('t) 1o h(v) M@ DT T, for

P
_  hupetk wi b skiiky¢ pki); fort<T
T Lk K ; fort=T
2 s=t D S™ »

where , 1lhy;!yi ¢+ for (2 @l('¢) istheinstantaneous hinting problem regret

q
If, in addition, q = argmin g , m2=’(c® 1), thenHintRegre (v) (2log,(m) 1)

P
t=1 1 -

Our next lemma, proved in App. J.1, provides an interpretable bound for g@aclerm in terms of the hinting problem

subgradient$ ¢); 1.

Lemma 24 (Hinting problem subgradient regret bound)nder the notation and assumptions of Cor. 23,

hubef ¢; ) ift<T
%t |ft:T’
P )
t, 4D+1) .., pkski and
¢, 4 pki L, pkski:

for

Now x any u 2 W . We invoke Assump. 1, Cor. 23, and Lem. 24 in turn to bound the base problem regret
L N .
Regret (u) = [; “t(wy) qt(U)
P
Co(u)+ Ca(u) [ fe(he(ty)) by Assump. 1
r

, P 4 P
Co(u) + Cy(u) infyov o fe(he(V))+  (2logy(m) 1)
r

;1 t1 byCor 23

. P G P
Co(u)+ Ca(u) infyay oy Fe(he(v)+  (logy(m) 1)(3 v+ ([, hube( (; 1)) byLem. 24,

The advertised bound now follows from the triangle inequality.

J.1. Proof of Lem. 24: Hinting problem subgradient regret bound
Fix anyt 2 [T]. The triangle inequality implies that

kitke = k¢ 1 ke k ok + R ) 2K kg

since! { 24 , 1. We repeatedly apply this nding in conjunction with Jensen's inequality to conclude

P ) P 5 P )
o ok (DD Lok 4D+ L ok ki and
kKt pkik oy p ski Kk t pki oy pkski 4k pki ¢y pkske:

K. Examples: Learning to Hint with DORM+ and AdaHedgeD

a,z;F +2 bm:

P
By Thm. 12, AdaHedgeD satis es Assump. 1 with(h;) = kr¢k kh; tS:t b sk Fam(W)Z+z Ci(u) =

P diam(W)2+2 , andCo(u) = 2diam(W ) max;,r) ;:% b Kosk .
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P
By Cor. 9, DORM+ satis es Assump. 1 with (h) = kry p + hysr  hiekgkh ts:t b skg, Co(u) =0, andCy(u) =
kuk?2
26 D

These choices give rise to the hinting losses
P
IPORM*(1) = kry p + her  hekgkHy! tszt b Fskg and (12)
P
|pdaredgeR; ) = kgykgkH,! L. pUskg when kk =kkq for q2[111]:

The following lemma, proved in App. K.1, identi es subgradients of these hinting losses.
Lemma 25 (Hinting loss subgradient)if I;(! ) = kgikqkH{!  vikq for somegs; vy 2 R andH; 2 RY ™, then

(
_ ﬁHfth! vij9 tsignHe!  vy) ifg<1 2 @) 13)
kgiky sign( )H{ ex ifg=1 '

fork = argmax;,q;(Ht!  vi)j and =max;aq(He!  vi);-
Our next lemma, proved in App. K.2, bounds thenorm of this hinting loss subgradient in terms of the base problem
subgradients.

Lemma 26 (Hinting loss subgradient boundYnder the assumptions and notation of Lem. 25, the subgradiesdtis es
k tky  d¥9kgikqkH ks for kHik, the maximum absolute entryidf.

K.1. Proof of Lem. 25: Hinting loss subgradient

The result follows immediately from the chain rule and the following lemma.

Lemma 27 (Subgradients gb-norms) Supposev 2 RY andk 2 argmay , q Jwjj. Then
8
WP sign(w) if kwk, 6 0;p2 [1;1)
p
Gwkp 3 5 € sign(wi) if kwk, 6 0;p= 1

0 if kwk, = 0

1

Proof. Since0 is a minimizer ofk k,, we havekuk, k Ok, + MO;u  0Oi for anyu 2 R and henc® 2 @Okp.
Forp 2 [1;1 ), by the chain rule, ikwk, & O,

@kwk, w

pjw; P ! sign(w;)

Pr 1 s P. G
@ o iwid® TP= iR jwip

1=p

k=1 JWkjP jw;j P *sign(w;)

jwjj

p 1
= ke sign(w; ):

Forp= 1, we have thakwk; = max;,jw;]. By the Danskin-Bertsekas Theorem (Danskin, 2012) for subdifferentials,
@wk; = convf[ @w;j s.t. jwjj = kwky g = convf[ sign(wj)e; s.t. jw;jj = kwky g, whereconv is the
convex hull operation. O

K.2. Proof of Lem. 26: Hinting loss subgradient bound

Ifq2[1;1), we have

. P . . P
Kk =i Pk‘iltkq.) gskg rHJH! =t p Osi® 'sign(Hy! st s .

kg[kq maij[d]kHtej kq P t 1 . s . .
PN T kH¢! s=t D 9sKg by Holder's inequality for(g; p)

d9kgikqkHiky by Lem. 21.
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If g= 1, we have

k ki = kagiks sign( )H{ ek , = I[ 60]kgiks kHikq d¥%%gky kHk; :

L. Experiment Details
L.1. Subseasonal Forecasting Application

We apply the online learning techniques developed in this paper to the problem of adaptive ensembling for subseasonal
weather forecasting. Subseasonal forecasting is the problem predicting meteorological variables, often temperature and
precipitation, 2-6 weeks in advance. These mid-range forecasts are critical for managing water resources and mitigating
wild res, droughts, oods, and other extreme weather events (Hwang et al., 2019). However, the subseasonal forecasting
task is notoriously dif cult due to the joint in uences of short-term initial conditions and long-term boundary conditions
(White et al., 2017).

To improve subseasonal weather forecasting capabilities, the US Department of Reclamation launched the Sub-Seasonal
Climate Forecast Rodeo competition (Nowak et al., 2020), a yearlong real-time forecasting competition for the Western
United States. Our experiments are based on Flaspohler et al. (2021), a snapshot of public subseasonal model forecasts
including both physics-based and machine learning models. These models were developed for the subseasonal forecasting
challenge and make semimonthly forecasts for the contest period (19 October 2019 — 29 September 2020).

To expand our evaluation beyond the subseasonal forecasting competition, we used the forecasts in Flaspohler et al. (2021)
for analogous yearlong periods (26 semi-monthly dates starting from the last Wednesday in October) beginning in Oct. 2010
and ending in Sep. 2020. Throughout, we refer to the yearlong period beginning in Oct. 2010 — Sep. 2011 as the 2011 year
and so on for each subsequent year. For each forecadt, dlademodels in Flaspohler et al. (2021) were trained only on data
available at time and model hyper-parameters were tuned to optimize average RMSE loss on the 3-year period preceding
the forecast date For a few of the forecast dates, one or more models had missing forecasts; only dates for which all
models have forecasts were used in evaluation.

L.2. Problem De nition

Denote the set ofd = 6 input modelsfM 1;:::M 4g with labels: llr  (Modell), multillr (Model2),

tuned _catboost (Model3),tuned _cfsv2 (Modeld),tuned _doy (Model5) anduned _salient _fri (Model6).

On each semimonthly forecast date, each mdtigimakes a prediction for each of two meteorological variables (cumulative
precipitation and average temperature over 14 days) and two forecasting horizons (3-4 weeks and 5-6 weeks). For the 3-4
week and 5-6 horizons respectively, the forecaster experiences a d&ay @f andD = 3 forecasts. Each model makes a

total of T = 26 semimonthly forecasts for these four tasks.

At each timet, each input mode\l ; produces a prediction & = 514 gridpoints in the Western United Stateg; 2

RC = M ;(t) for taskc at timet. Let X 2 R® 9 be the matrix containing each input model's predictions as columns. The
true meterological outcome for tasks y¢ 2 R®. As online learning is performed for each task separately, we drop the task
superscript in the following.

At each timestep, the online learner makes a forecast predigtibg playingw; 2 W = 4 4 1, corresponding to a convex
combination of the individual modelg; = Xw;. The learner then incurs a loss for the play according to the root
mean squared (RMSE) error over the geography of interest:

. 1
t(wy) = %kw Xewiks;

( X>
L (Xiwe yy) ;
@ W) 3 g = Pcw, yik, if Xiwe y:60
0 if X Wi Yt = 0

Our objective for the subseasonal forecasting application is to produce an adaptive ensemble forecast that competes with the
best input model over the yearlong period. Hence, in our evaluation, we take the competitor set to be the set of individual
modelsU = fe; :i 2 [d]g.
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by Cor. 29. If ; > 0,

+ =min( t(l); t(z); 53))+ for
1)
t

Fis1 (yt; 1) Fres (Wes o)
tln( j2[d] Wi;j exp((ht;j Ot Dt ): t)) + f'gt Dt Ne; Wi
¢ In( j21a] Wt eXp((ht;j Ot Dt c)=)+ M pt heywi+c;

t(z) hgy;we  wei;  and

Ft+l(gt; 1) Fra(we o+ hggwe Wil
eInC o Wy exp((Ryy Ot by )= )+ Mt b AW + hgwe Wy
(InC oWy exp(fy g by €)= )+ hgr b AW+ + hgowe Wi

®)
t

t = min( fl); t(z); t(s))+ for
1 . .
D = by wyd min; 2 q) 91:t; ;
@ = hgwe  wii;  and

3 . . .
® = hgp Wi mingo gy + hgowe Wi

Leveraging these results, we present the pseudocode for the AdaHedgeD and DUB instantiations of ODAFTRL in Algo-
rithm 1.

N.2. DORM and DORM+

The DORM and DORM+ algorithms presented in the experiments are implementations of ODAFTRL and DOOMD
respectively that play iteratesW , 4 4 1 using the defalﬂt value = 1. Both algorithms use p-norm regularizer

= %k kg, which is1-strongly convex with respecttok = * p 1k k, (see Shalev-Shwartz, 2007, Lemma 17) with
kk = p%k kq. For the paper experiments, we choose the optimal \@ianf o » dzzqo(qO 1) to obtainin(d) scaling
in the algorithm regret; fod = 6, p= g = 2. The update equations for each algorithm are given in the main text by DORM
and DORM+ respectively. The optimistic hinters p'g)\t/ide delayed gradientdintghich are then used to compute regret

gradient hintss, wherery = hgy;wii g andh; = S:f b s+ hgwe 10 &

N.3. Adaptive Hinting

For the adaptive hinting experiments, we use the DORM+ as both the base and hint learner. For the hint learner with DORM
base algorithm, the hint loss function is given by (12) vgjth 2. The plays of the online hintér; are used to generate the
hintsh, for the base algorithm using the hint matk 2 RY ™. Thej -th column ofH, contains hintej's predictions for

the cumulative missing regret subgradientsy ;. The nal hint for the base learner i = H¢! . Psuedo-code for the
adaptive hinter is given in Algorithm 2.

N.4. Proof of Lem. 28: Negative entropy properties

The expression of the Fenchel conjugate far 0is derived by solving an appropriate constrained convex optimization
problem forw = 4 4 1, as shown in Orabona (2019, Section 6.6). Thevalue df; )2 @ )y, ( ) uses the properties
of the Fenchel conjugate (Rockafellar, 1970; Orabona, 2019, Theorem 5.5) and is shown in Orabona (2019, Theorem 6.6).
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P
Algorithm 1 ODAFTRLwithW =44 1, (w)= jd:1 w;j Inw; +In(d), delayD 0, and tuning strategiuning

[EnY

: Parameter =sup,,, , , (u)=In(d)

2: Initial regularization weight: o =0

3: if tuning is DUB then

4: |Initial regularization sum: ¢ =0

5:  Initial maximum:a™* =0

6: end if

7: Initial subgradient sumgy.; = 0 2 RY

8: Dummy losses and iterateg:p = =go=02R%,w p= =wg=02Rd?

9:fort=1;:::;T do

10: Receive hinh; 2 RY

11:  Outputw; = argmin, ,w Ft p(w; )+ hh¢;wi asin Cor. 29

12: Receiveg; p 2 RYand payg; p;w; pi

13: Update subgradientsugl.t p = 91t o 1+ 0t b

14: if tuning is AdaHedgelthen

15: Compute the auxiliary plaw; p =argmin,,w Ft p+1(W; ¢ p)asinCor. 29

16: Compute the auxiliary regretterr{\l)D =F psa(Wt p; t b) Ft psa(W¢ p; t p)asinProp.30

17: Compute the drifttermt(z)D =hy p;Wt b Wt pi

18: Compute the auxiliary hint (14); o, G 204 b +min( Gr— %25 1)(hi b G 201 )

19: Compute the auxiliary play; p =argmin,,w Ft p+1(W; ¢ p)+ M b Ot 2p:t p,Wi asinCor. 29

20: Compute the regrettemﬂ?’)D =F p+1(W p; t ) Ft ps1(We p; t D)+ Ot DyWe b W pias
in Prop. 30

21: Update (+1 = ¢+ < min( t(l)D; t(Z)D; t(3)D)+ asin (3)

22:  elseiftuning is DUB then p

23: Computea; p.r =2min kg; pki ;kh; p L:? 2D gsklP asin (2)

24: Computeb; pr = 1kh; p ts:lt3 o Usk2  L(khy p ts:ltD 0 Oski Kk gt pky )2 asin(2)

25: Update (41 = (+ af o t2 bt pF

26: Update maximuma™® = max(a™;a; p:t b 1F)

27: Update (+; = 1(2am™> + t+1) asin DUB

28: endif

29: end for

N.5. Proof of Prop. 30: AdaHedgeD ;
First suppose; > 0. The rstterm in themin of AdaHedgeD's ; setting is derived as follows:

O Fui (W 1) Fa (W 1) by de nition (3)

Fo p(We, o)+ fhywei + gy b hgywei infyow Feea (Wi 1) by de nition of wy

Fi p(We; o)+ hhy;wii + ge o heswedi+ ¢« w ( g1t=+) by Cor. 29

= ¢t wlgu=0) ¢t wl he gut o )=+ bt heywyd

becausev; 2 argmin, ,w Fr o (W¢; )+ Phe;wyi
P P .

e(In( ,-dzl exp( gutj = 1))  w(In( ,-dzl exp(( gut o 15 hy)=1))+ Mot bt he;wei byLem. 28
Py

- In d o exp( gut = t) + ) Ne: Wi
t =1 " "exp(( 911 o 13 hy )= 1) e o howe

P d exp(( g1y o 15 Ny )= dexp(hy g o )=o) hge bt he;wyi

= ¢In -
t i=1 9, ep(( gur o 15 heg )=o)

P
= In J-d:l Wy exp((hy; Ot ptj)=1t) + M otr hewed  bythe expression fow, in Cor. 29.

The expression for the third term in than of AdaHedgeD's ; setting follows from identical reasoning.
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Algorithm 2 Learning to hint with DORM+¢=2) hint learner, DORM+ base learner, and delay 0

1: Subgradient vectog p; go= 02 RY

2: Meta-subgradient vector: p; 0=02RM

3: Initial instantaneous regret: p = 02 RY

4: Initial instantaneous meta-regret:p = 0 2 R™

5: Initial hinthg = 02 RY

6: Initial orthant meta-vector-; = 0 2 R™

7:fort=1;:::;T do

8: //Update online hinter using DORM+ with g=2

9:  Find optimal unrtormalized hint combination vectqgr= max(0;~ 1+  p 1)
10: Normalize:! ; = 1=m if =0

k=hl;~i otherwise P
11:  Receive hint matrixH; 2 RY ™ in which each column is a hint for tszt o'ls
12: Output hinthy = H¢! ¢
13: /I Update DORM+ base learner and get next play
14:  Outputw; = DORMHg: p 1;ht)
15. Receiveg; p 2 RYand payg; p;w; pi
16: Compute instantaneous regretp = 1hgt p;w; pi gt b
17:  Compute hint meta-subgradient p 2 @ p (!t p) 2 R™ asin (13)
18: Compute instantaneous hintregretp = 1h ¢ p;!¢ pi t D
19: end for

Now suppose ; = 0. We have

D Fur (Wi 1) Fua (We; () by de nition (3)

= hgy;wii infyow Fres (W) ) by de nition of w
= hgye; Wil minjag g by Cor. 29.

Identical reasoning yields the advertised expression for the third term.

O. Extension to Variable and Unbounded Delays

In this section we detail how our main results generalize to the case of variable and potentially unbounded delays. For each
timet, we de nelasf(t) as the largest indexfor which g; s is observable at time(that is, available for constructing; )

and rst(t) as the rsttimes at whichg . is observable at time (that is, available for constructings).

0O.1. Regret of DOOMD with variable delays

Consider the DOOMD variable-delay generalization

Wirp = argmin jasqr)+a: lasqe+1) + hesr he;wi+ B (w;wy) with hg, O and arbitrary wy:
w2W
(DOOMD with variable delays)
We rst note that DOOMD with variable delays is an instance of SOOMD respectively with a “bad” choice of optimistic
hint g+, that deletes the unobserved loss subgradigrg +1y+1: -
Lemma 31(DOOMD with variable delays is SOOMD wilgh a bad hinpOOMD with variable delayss SOOMDwith
Gte1 = Ot + Olasqtyrl: lasqi+n) Ot + Nest e = het + ) Oasts)+t: lasts+))  Os: = Nt Orasqeenyst: o
The following result now follows immediately from Thm. 4 and Lem. 31.

Theorem 32(Regret of DOOMD with variable delays)f is differentiable ancht+1 , Quas(t+1)+1: T, then, for all
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u 2 W, theDOOMD with variable delaygteratesw; satisfy
. 1 P 2 .
Regret(u) B (u;wo)+ = ) big; for
bfo , hubegkh, o= asqy+1 UsK i KOlasqyet: tastrsn) + Nisr Dk ):

0.2. Regret of ODAFTRL with variable delays
Consider the ODAFTRL variable-delay generalization

Wisr = argmin fgqjaseeeny + s s Wi+ e (W): (ODAFTRL with variable delays)
w2W
P
Since ODAFTRL with variable delays is an instance of OAFTRL vgithy = hi4 tS: last+1)+1 s the following

result follows immediately from the OAFTRL regret bound, Thm. 14.

Theorem 33(Regret of ODAFTRL with variable delays)f is nonnegative and; is non-decreasing ih, then,8u 2 W ,
the ODAFTRL with variable delay#eratesw; satisfy

P bee .

Regret (u) 1 (u)+ —;
bur , hubetkh, sty 9sK 1kgik ) and (15)
age , diam(W)min khy (o Oskikgik

T .

=1 min(

P t
sS=

ace )  with

0.3. Regret of DUB with variable delays

Consider the DUB variable-delay generalization

P . .
t+1 :2j Iarg%%) | Ras(j +11: jFF jastt+1) aZ +2 bip: (DUB with variable delays)

Theorem 34 (Regret of DUB with variable delaysyix > 0, and, fora.r ;bir as in(15), consider theDUB with
variable delaysequence. If is nonnegative, then, for all 2 W , the ODAFTRL with variable delay#eratesw; satisfy

Regret (u) —+1

9 p- .
2mMax[r] Aas(t)+i: t 1F T t=1 At T2 by

Proof. Fix anyu 2 W . By Thm. 33, ODAFTRL with variable delays admits the regret bound
P .
Regref(u) 7 (u)+ [, min(Ltbee;ag):
To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 35 (DUB with variable delays-style tuning boundfix any > 0 and any non-negative sequendes)_, ,
(0){; . If ( )¢ 1is non-decreasing and

P
t+1 0 2MaX% fas(t+1) 1 as(j+1)+1: | T :isl(ﬁl) a?+2bj t+1 foreach t
then
Py
t=1 min(b= ;&) rst(T) rst(T)-

O
SinceT  rst(T), 7 rst(T), andlasi( rst(T)) = T, the result now follows by setting = a;r andb = byr , SO
that

Regret (u) T W+ s W+ ) sTy:
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0O.4. Proof of Lem. 35: DUB with variable delays-style tuning bound

We prove the claim

P .
t i=1 min(b = ;&) rst(t) rst(t)

by induction ort.

Base case Fort =1, since lagtrst(t)) t, we have

9
i min(h= ;&) ar  2max . 1pas(j+1)+1: | T i a?+2b;

P | t(t
2MaX srst() 1@asaapa V@ *2bi= gy rst(t)
con rming the base case.

Inductive step Now xanyt+1 2and suppose that

rst (i) rst (i)

forall1 i t.Sincerst(las{i+1)) i+1and gisnon-decreasing ig, we apply this inductive hypothesis to deduce
that, foreacld i t,
2 2 _ o mi — 2 2 _ . —_ : a2
i+ F=( i +min(be = e @41)) =2 imin(bs1= j+1;8+1) tMiN( b1 = 415 8541)
=2 jasgi+z) MiN(B+1 = jers@+0) +2( las(i+1) ) MIN(B41 = j41;@41) +MIN( D1 = 41 @41 )?
X
=2 Jas(i+1) MiN(B+1= j+158541) +2 min(b = j;a)MiN(B = 41 ;@41 ) +MiN( b1 = 41841 )°
j=las(i+1)+1

2 rst(lasti+) MiN(B41 = iv1;@ie1) + 2 asgienyer: | MIN(B+1 = 415 8541) + 8Fg
2 e MIN(B+1 = 415841 ) + 2 Qaggienyer: | MN(Dey = 413 @41) + a2
2041 + @4y * 28as+nrs i MIN(B4 = 418141 ):

Now, we sum this inequality ovér=0;:::;t, to obtain
> Py 2 Py - -
t+1 izo(@bi+v +al;)+2 o Qasqi+n+r i MIN(B+1 = 415 8541)
= H@bi+a)+2 | apseyi imin(h= ;&)
1@ +2bi)+2max; taus(enes | o MN(B= 5a)
t+1

i=1 (@+2bi)+2 n MaX t Qasyj +1)+1: j -

We now solve this quadratic inequality, apply the triangle inequality, and invoke the rdidiprst (t +1)) t+1 to
conclude that

1q 2 Pt 2
t+1  MAXj ¢ asj+r)+r: j + 5 (2MAX ¢ Qasj+1)+1: j)°+4 21 & +2 b

P
2max,- t as(j +1)+1: | + i;rl ai2 +2 Db

P | t(t+1 .
2MaX jas(rst(t+1) 1 Qastj+1+l | T iisl( ret (D) a?+2b;= rst(t+1) rst(t+1) -

0O.5. Regret of AdaHedgeD with variable delays
Consider the AdaHedgeD variable-delay generalization

P + . . .
1 = L 'j‘fft 2 s for  denedin (3). (AdaHedgeD with variable delays)
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Theorem 36(Regret of AdaHedgeD with variable delay$jix > 0, and consider thddaHedgeD with variable delays
sequence. If is nonnegative, then, for all 2 W , the ODAFTRL with variable delay#erates satisfy

Regre(u) ) +1
4 p 5
2mMaX:z (1] Qas(t+1)+1: tF T t=1 Agp +2 ber

P
Proof. Fixanyu 2 W , and for each,dene 9, = 1" . ¢sothat ( %, 9= .. Sincethe AdaHedgeD with

variable delays regularization sequelfce); 1 is non-decreasindgas{T) T, and hence 9.,, Thm. 14 gives the
regret bound

Py 0 0
Regret(u) r (W+ o« 1 W+ 74 ( W+ ) 74
and the proof of Thm. 14 gives the upper estimate (5):

bi;F

t  min —agF forall t2[T]: (16)
Hence, it remains to bound? ,, . We have
P P
2 _ T 2 2\ — T
'IO'+1 - p t=1 ( to+1 ?)_ t=1 ( ?+1 '?)2+2 ( t0+1 ?) ?
= [, 2= +2 0 bythedenitionof 2,
— P T 2— 0
= o = 2 et24(F  v)
Pr o 0
=1 = F2 ¢ 2 gmaxor (Y )
— P T 2— 0 0
- = t=1 t— +2 t ot +2 T+1 maxt2[T]( t t)
T
= b t=1 =42 +2 9, MaXi2[T] las(t+1)+1: t
T

t=1 atz;F = +2bt;F +2 ?’+1 ma-XtZ[T] alas'(t+1)+1: tF by (16)-

Solving the above quadratic inequality fo},, and applying the triangle inequality, we nd

0 1q P= 2
Fi1 MaX2[r] Aas(rayrt: oF + 53 AMaAXo[r) Aas(rrayra: oF )2+ 4 o A +2 by
g P T 2 .
2mMaX [T] Qas(t+1)+1: tF t t=1 At T2 be:
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